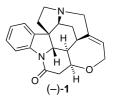
41.55, H 5.23, N 20.42; found C 41.31, H 4.70, N 20.34; FTIR (KBr): $\tilde{v}=2564$ (B-H), 1722, 1634 cm $^{-1}$ (C=O); λ_{max} (CH $_3$ CN, ε , κ^{-1} cm $^{-1}$): 378 (20).

Received: May 14, 2002 [Z19292]

- S. Trofimenko, Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, Imperial College Press, London, UK, 1999.
- [2] N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Moro-oka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, A. Nakamura, J. Am. Chem. Soc. 1992, 114, 1277.
- [3] N. Kitajima, K. Fujisawa, M. Tanaka, Y. Moro-oka, J. Am. Chem. Soc. 1992, 114, 9232.
- [4] A. Looney, S. Trofimenko, G. Parkin, R. Alsfasser, M. Ruf, H. Vahrenkamp, *Inorg. Chem.* 1991, 30, 4098.
- [5] S. M. Carrier, C. E. Ruggiero, W. B. Tolman, J. Am. Chem. Soc. 1992, 114, 4407.
- [6] Crystal data for **1**: C₂₅H₄₀BN₇O₆, M = 545.45, a = 31.512(12), b = 10.687(3), c = 19.141(6) Å, β = 106.34(3)°, V = 6186(4) ų, monoclinic, space group C2/c, Z = 8, T = 298(2) K, final R1 = 0.0696, wR2 = 0.1818, GOF (on F²) = 1.032.
- [7] For a basic introduction see: a) J. W. Steed, J. L. Atwood Supra-molecular Chemistry, Wiley, Chichester, UK, 2000. For an outstanding and up-to-date glimpse into recent research in the field, see: b) Supramolecular Chemistry and Self-Assembly Special Feature issue Proc. Natl. Acad. Sci. USA 2002, 99, 4755.
- [8] See Transition Metals in Microbial Metabolism (Eds.: G. Winkelmann, C. J. Carrano), Harwood Academic, Amsterdam, The Netherlands, 1997.
- [9] A. T. Maynard, D. G. Covell, J. Am. Chem. Soc. 2001, 123, 1047.
- [10] Crystal data for **2**: $C_{36}H_{49}N_{15}O_{13}BCINi\cdot ACN\cdot H_2O$, M=1061.9, a=12.393(3), b=13.318(4), c=17.011(4) Å, $\alpha=108.18(1)$, $\beta=94.52(1)$, $\gamma=101.24(1)^\circ$, V=2587.0(1) ų, triclinic, space group $P\bar{1}$, Z=2, T=298(2) K, final R1=0.0766, wR2=0.1314, GOF (on F^2)=1.031. CCDC-159087 (**1**) and CCDC-159057 (**2**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [11] B. S. Hammes, M. W. Carrano, C. J. Carrano, J. Chem. Soc. Dalton Trans. 2001, 1448.

A Concise Formal Total Synthesis of (±)-Strychnine by Using a Transannular Inverse-Electron-Demand Diels-Alder Reaction of a [3](1,3)Indolo[3](3,6)pyridazinophane**

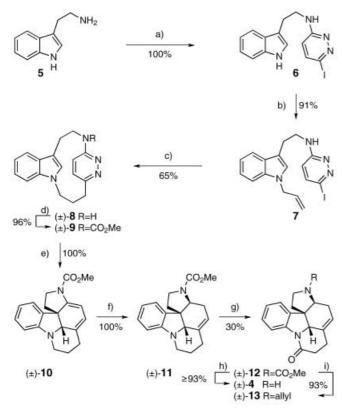

Graham J. Bodwell* and Jiang Li

Owing to its level of complexity for its size, strychnine (1) presents a most formidable synthetic challenge.^[1] The first total synthesis, one of the most significant achievements in the history of organic synthesis, was reported by Woodward^[2] in 1954 and it wasn't until the early 1990s that a series of other

[*] Dr. G. J. Bodwell, J. Li Department of Chemistry Memorial University of Newfoundland St. John's, NF, A1B 3X7 (Canada) Fax: (+1)709-737-3702 E-mail: gbodwell@mun.ca

- [**] Support of this work from the Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged.
- Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

successful syntheses, both racemic and enantioselective, began to appear. There are now ten reported total syntheses of strychnine^[2-11] and each of them features an elegant application of one or more reactions that bring about a substantial increase in molecular complexity, for


example, the Mannich reaction combined with a sigmatropic rearrangement (Overman and co-workers, [3] Kuehne et al., [4,5]), the intramolecular Diels–Alder reaction (Rawal et al., [6] Martin and co-workers, [7]), intramolecular Heck reactions (Rawal et al., [6] Bonjoch, Bosch, and co-workers, [8]), the cobalt-mediated [2+2+2] cycloaddition (Vollhardt and co-workers, [9]), skeletal rearrangements (Stork, [10] and Martin and co-workers, [7]) and transannular oxidative cyclization (Magnus et al., [11]). The shortest synthesis reported to date is that of Vollhardt (14 steps from propiolic acid), but the highest overall yield (10%) belongs to Rawal's synthesis. [6,12]

We recently reported the synthesis of cyclophane (\pm) -2 and its efficient transannular inverse-electron-demand Diels–Alder (IEDDA) reaction to afford pentacycle (\pm) -3 (Scheme 1).^[13] The similarity of (\pm) -3 to the key pentacyclic amine (\pm) -4 (ABCEG rings of strychnine) described by Rawal^[6] prompted us to attempt to apply our "cyclophane approach" to a formal total synthesis of (\pm) -strychnine.

Scheme 1. Conversion of (\pm) -2 into (\pm) -3. Reagents and conditions: a) N_iN -diethylaniline, Δ , 48 h.

The synthesis (Scheme 2) commenced with the reaction of the tryptamine 5 with 3,6-diiodopyridazine^[14] to afford iodide 6 (100%). N-Allylation of the indole moiety yielded 7 (91%), which was subjected to a sequential hydroboration/ intramolecular B-alkyl Suzuki-Miyaura cross-coupling reaction^[15] to give cyclophane (\pm)-8 (65%). The secondary amine was protected as a methyl carbamate and the resulting cyclophane (\pm)-9 (96%) was heated in N,N-diethylaniline to induce the key transannular IEDDA reaction. Pentacycle (\pm) -10, the product of the transannular IEDDA reaction followed by the expulsion of N₂ from the initially formed adduct,[13] was obtained quantitatively. This very productive step resulted in the generation of two stereogenic centers (including the key quaternary center^[1b]) with the correct relative stereochemistry^[13] and the simultaneous construction of the C, E, and G rings.

Having rapidly constructed the ABCEG framework, a short series of functional group interconversions were required to prepare (\pm) -4. Reduction of (\pm) -10 with NaBH₄/CF₃CO₂H occurred with complete chemo- and stereoselectivity to afford (\pm) -11 (100%). The tertiary amine was then oxidized with PDC^[16] to give the amide (\pm) -12 (30%) and removal of the carbamate protecting group delivered Rawal's

Scheme 2. Synthesis of Rawal's key intermediate (\pm)-4. Reagents and conditions: a) 3,6-diiodopyridazine, sec-butanol, Δ , 4 days; b) KOH, DMF, RT, 1 h, then allyl bromide, RT, 2 h; c) 9-BBN, THF, 0°C \rightarrow RT, 12 h, then Pd(PPh₃)₄, Cs₂CO₃, THF, Δ , 2 days; d) NaHMDS, THF, -78°C, 1 h, then ClCO₂Me, -78°C \rightarrow RT, 3 h; e) N_i -diethylaniline, Δ , 1 h; f) NaBH₄, CF₃CO₂H, benzene, 0°C \rightarrow RT, 12 h; g) PDC, celite, CH₂Cl₂, RT, 3 d; h) TMSI, CHCl₃, Δ , 6 h; i) TMSI, CHCl₃, Δ , 6 h; then allyl bromide, Li₂CO₃, DMF, RT, 24 h. DMF = N_i N-dimethylformamide, 9-BBN = 9-borabicyclo[3.3.1]nonane, PDC = pyridinium dichromate, TMS = trimethylsilyl.

key intermediate (\pm)-4. The crude yield of this latter reaction was typically over 100% and attempts to purify the product chromatographically led to substantial losses and little improvement in the quality of the NMR spectra. Rawal^[6] also noted (in his Supporting Information) that this compound was not very stable. Consequently, he used the crude product immediately in the following step, which was the attachment of the side chain by N-alkylation of the secondary amine with an allylic bromide. Accordingly, the crude product of the reaction of (\pm)-11 with TMSI was treated immediately with allyl bromide and Li₂CO₃. This reaction afforded (\pm)-13 in 93% yield, which established a lower limit of 93% for the yield of (\pm)-4.

The overall yield of (\pm) -4 from **5** is 15.8% over eight steps, with the majority of the losses occurring during the conversion of (\pm) -11 into (\pm) -12 (30% yield). All attempts to improve this yield have so far been unsuccessful, as have attempts to introduce the carbonyl group prior to the key transannular IEDDA reaction. Applying Rawal's yields^[6] for the conversion of (\pm) -4 into isostrychnine and Kuehne's yield^[4] for the conversion of isostrychnine into strychnine, our formal overall yield of (\pm) -strychnine from tryptamine is 2.6% over 12 steps. Thus the synthesis described here is the shortest route to strychnine yet reported. However, the best overall yield still belongs to Rawal. [6]

Until recently, the use of cyclophanes in the synthesis of natural products was unheard of. The synthesis described above adds to the still small, but growing, number of syntheses that employ cyclophanes.^[17,] Future work in this area will be aimed at the modification of the existing synthesis to avoid the use of isostrychnine as an intermediate and development of an enantioselective route to strychnine.^[18]

Received: April 25, 2002 [Z19171]

- For reviews of strychnine syntheses, see a) U. Beifuss, Angew. Chem.
 1994, 106, 1204-1209; Angew. Chem. Int. Ed. Engl. 1994, 33, 1144-1149; b) J. Bonjoch, D. Solé, Chem. Rev. 2000, 100, 3455-3482.
- [2] a) R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U. Daeniker, K. Schenker, *J. Am. Chem. Soc.* 1954, 76, 4749–4751;
 b) R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U. Daeniker, K. Schenker, *Tetrahedron* 1963, 19, 247–288.
- [3] a) S. D. Knight, L. E. Overman, G. Pairaudeau, J. Am. Chem. Soc. 1995, 117, 5776 – 5788; b) S. D. Knight, L. E. Overman, G. Pairaudeau, J. Am. Chem. Soc. 1993, 115, 9293 – 9294.
- [4] M. E. Kuehne, F. Xu, J. Org. Chem. 1993, 58, 7490 7497.
- [5] M. E. Kuehne, F. Xu, J. Org. Chem. 1998, 63, 9427 9433.
- [6] V. H. Rawal, S. Isawa, J. Org. Chem. 1994, 59, 2685 2686.
- [7] M. Ito, C. W. Clark, M. Mortimore, J. B. Goh, S. F. Martin, J. Am. Chem. Soc. 2001, 123, 8003 – 8010.
- [8] a) D. Solé, J. Bonjoch, S. García-Rubio, J. Bosch, Chem. Eur. J. 2000, 6, 655–665; b) D. Solé, J. Bonjoch, S. García-Rubio, E. Peidró, J. Bosch, Angew. Chem. 1999, 111, 408–410; Angew. Chem. Int. Ed. 1999, 38, 395–397.
- [9] a) M. J. Eichberg, R. L. Dorta, D. B. Grotjahn, K. Lamottke, M. Schmidt, K. P. C. Vollhardt, J. Am. Chem. Soc. 2001, 123, 9324-9337;
 b) M. J. Eichberg, R. L. Dorta, K. Lamottke, K. P. C. Vollhardt, Org. Lett. 2000, 2, 2479-2481.
- [10] G. Stork, disclosed at the Ischia Advanced School of Organic Chemistry (Ischia Porto, Italy), 1992.
- [11] a) P. Magnus, M. Giles, R. Bonnert, C. S. Kim, L. McQuire, A. Merritt, N. Vicker, J. Am. Chem. Soc. 1992, 114, 4403-4405; b) P. Magnus, M. Giles, R. Bonnert, G. Johnson, L. McQuire, M. Deluca, A. Merritt, C. S. Kim, N. Vicker, J. Am. Chem. Soc. 1993, 115, 8116-8129.
- [12] The overall yield of 10% is not claimed by Rawal, but rather reported in ref. [1]. Although not explicitly stated, this yield calculation employs Kuehne's 28% yield^[4] for the conversion of isostrychnine into strychnine. Rawal reports 10% for this transformation.^[6]
- [13] G. J. Bodwell, J. Li, Org. Lett. 2002, 4, 127 130.
- [14] M.-S. Shin, Y.-J. Kang, H.-A. Chung, J.-W. Park, D.-H. Kweon, W. S. Lee, Y.-J. Yoon, J. Heterocycl. Chem. 1999, 36, 1135 – 1142.
- [15] S. R. Chemler, D. Trauner, S. J. Danishefsky, Angew. Chem. 2001, 113, 4676–4701; Angew. Chem. Int. Ed. 2001, 40, 4544–4568.
- [16] E. J. Corey, G. Schmidt, *Tetrahedron Lett.* 1979, 20, 399–402. We are unaware of any previous use of PDC to oxidize a tertiary amine to a tertiary amide.
- [17] For example see: a) M. E. Layton, C. A. Morales, M. D. Shair, J. Am. Chem. Soc. 2002, 124, 773-775; b) P. E. Harrington, M. A. Tius, J. Am. Chem. Soc. 2001, 123, 8509-8514; c) D. L. Boger, J. Hong, J. Am. Chem. Soc. 2001, 123, 8509-8514; d) X.-T. Chen, S. K. Bhattacharya, B. Zhou, C. E. Gutteridge, T. R. R. Pettus, S. J. Danishefsky, J. Am. Chem. Soc. 1999, 121, 6563-6579; e) A. Toró, Y. Wang, P. Deslong-champs, Tetrahedron Lett. 1999, 40, 2765-2768; f) A. Toró, Y. Wang, M. Drouin, P. Deslongchamps, Tetrahedron Lett. 1999, 40, 2769-2772; g) A. Toró, A. L'Heureux, P. Deslongchamps, Org. Lett. 2000, 2, 2737-2740; h) J. A. Marshall, C. A. Sehon, J. Org. Chem. 1997, 62, 4313-4320
- [18] Following submission of the revised version of this manuscript, a new synthesis of (-)-strychnine was published, in which palladium chemistry played a dominant role. See: M. Nakanishi, M. Mori, Angew. Chem. 2002, 114, 2014–2016; Angew. Chem. Int. Ed. 2002, 41, 1934–1936.